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Abstract—Lithium enolates of N-acyl phenyliminooxazolidine auxiliaries reacted with alkyl halides to produce the �-alkylated
products with very high diastereofacial selectivity (up to >99% d.e.). The products were readily cleaved by simple alkaline
hydrolysis to give homochiral carboxylic acids and could also be directly converted to aldehydes and other acid derivatives such
as esters and amides. © 2002 Elsevier Science Ltd. All rights reserved.

Chiral auxiliary-derived asymmetric alkylations have
been studied extensively and are now important and
general methods for asymmetric carbon�carbon bond
formation.1 In particular, metal enolates of N-acyl oxa-
zolidinones, developed by Evans, are highly effective in
controlling facial selectivity for the preparation of
homochiral �-substituted carboxylic acid and their
derivatives.2 This auxiliary, however, undergoes endo-
cyclic cleavage rather than the required exocyclic cleav-
age in removal of the auxiliary with alkaline
hydrolysis.3 To suppress the troublesome endocyclic
cleavage, hazardous lithium hydroperoxide has been
used in place of the hydroxide.3a,3b N-Acyl oxazolidi-
nones are not directly converted to the corresponding
aldehydes. The generation of aldehydes is possible via
two-step processes involving reduction to the alcohol
followed by oxidation4 or conversion to either the
N-methoxy-N-methyl amide (Weinreb amide) or the
ester and subsequent reduction.5

We herein report that the use of metal enolates of new
N-acyl phenyliminooxazolidine auxiliaries results in as
high diastereoselectivity in alkylation reactions as N-
acyl oxazolidinones. The alkylation products are easily
hydrolyzed by simple alkaline hydrolysis (NaOH) with-
out using hazardous lithium hydroperoxide to suppress
the endocyclic cleavage6 and can be directly converted
to aldehydes7 as well as to other functional groups.

The synthesis of 2-phenylamino-2-oxazoline auxiliaries
2 was readily performed by reaction of 1,2-aminoalco-
hol with phenyl isothiocyanate to give the correspond-
ing N-(2-hydroxyethyl)thiourea, followed by cyclo-
desulfurization of the thiourea to the 2-phenylamino-2-
oxazoline by a one-pot reaction using p-toluenesulfonyl
chloride and NaOH according to our previous work
(Scheme 1).8 The auxiliary was then acylated with
propionyl chloride in the presence of potassium
tert-butoxide in THF (Scheme 1).9 The acylation of

Scheme 1.
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2-phenylamino-2-oxazoline might afford the regioiso-
meric N-endo- and N-exo-acylated products. The
obtained acyl derivative 3 was a regiocontrolled N-endo
product which was confirmed by X-ray crystallographic
analysis of the alkylation product 4e (Fig. 1).10

Formation of the lithium enolate at −78°C using LiH-
MDS occurred within 1 h in THF and then subsequent
addition of the alkyl halide led to the formation of
�-alkylated product with excellent diastereoselectivity
(Table 1).11 The purified products 4 were identified by
1H, 13C NMR and MS analyses. The diastereomeric
ratios were determined by HPLC. The absolute
configurations of the alkylated products 4 were
assigned by comparison of the [� ]D value reported in

Scheme 2.

Figure 1. X-Ray structure of 4e. Thermal ellipsoids are drawn
at the 30% probability level. Selected bond lengths (A� ) and
angles (°): N(1)�C(10) 1.408(6), N(2)�C(10) 1.252(6);
N(2)�C(10)�O(1) 125.1(5), N(2)�C(10)�N(1) 126.4(5),
O(1)�C(10)�N(1) 108.4(4).

the literature after removal of auxiliary. As the results
in Table 1 reveal, allyl bromide and benzyl bromides
reacted with these enolates to give the respective alkyl-
ated products with excellent yields (runs 2–3 and 5–6).
On the other hand, although a somewhat lower yield
was observed with ethyl iodide, the diastereoselectivity
was found to be virtually complete (runs 1 and 4). To
enhance the reactivity to ethyl iodide the use of HMPA
(5 V%) as cosolvent in NaHMDS was found to result in
lower diastereoselectivity of 67:33 in HPLC.

The alkylation product can be converted to a variety of
derivatives (Scheme 2). Treatment with NaOH yielded
the �-alkylated carboxylic acid.12 Conversion to the
chiral amide via simple substitution14 using benzyl-
amine also proceeded cleanly in the presence of two
drops of acetic acid.15 Formation of the methyl ester
was also possible by treatment with sodium methoxide.
Most significantly, direct conversion to aldehydes using
i-Bu2AlH (DIBAL-H) was achievable. In all cases,
recovery of deacylated auxiliary was performed
successfully.

Table 1. Diastereoselective alkylations of N-acyl-2-phenyliminooxazolidines 3

R�R D.e.c,dSubstrateRun Yield (%)bProducta

i-Pr3a1 55 98 (98:2)Et 4a
Allyl 4b 822 �99 (95:5)3a i-Pr
PhCH2 4c 883 �99 (97:3)3a i-Pr

�99 (100:0)534dEt4 PhCH23b
5 Allyl3b 4e 80 �99 (98:2)PhCH2

3b PhCH26 PhCH2 �99 (95:5)814f

a The configuration was verified by correlation to authentic samples after removal of the auxiliary.
b Isolated yields after purification.
c Determined by HPLC (Spherisorb ODS column) after purification.
d Parenthesis is the ratios of the unpurified diastereomeric mixture.
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In summary, N-acyl 2-phenyliminooxazolidines have
been shown to perform highly diastereoselective alkyla-
tions similarly to the corresponding oxazolidinones
when using LiHMDS. The products are easily isolated
and can be converted directly to aldehydes as well as
various other functional groups. Clean removal of the
auxiliary with aqueous base is also possible without
using hydroperoxide.
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